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Resolution in multidimensional NMR is generally limittsd by the relatively short 
acquisition times in the indrrectly detected dimensions. For most types of 2D exper- 
iments, signals acquired for long tl durations, on the order of T2 or larger, contribute 
less to the signal-to-noise (S/ N )  ratio of the fiaaI 2D spectrum than signals acquired 
for short t l  durations. As a consequence, the highest sensitivity per unit of measuring 
time is obtained if the t ,  acquisition time is kept shorter than TI. Therefore, one 
frequently limits t h e  number oft ,  increments to as s m d  a number as i s  sufficient to 
provide the required spectral resolution in the Fl dimension. Note that in the detected 
dimension, long acquisition times, up to several times T I ,  may be used without adding 
to the total time needed for recording the spectrum and without adversely affecting 
SIN. As a consequence, in 2D NNIR, truncation of the timedomain signal is a problem 
only in the C, dimension. 

A variety of slightly different linear prediction techniques have been proven successfu1 
at alleviating the problems associatd with trunc3ted timedomain signals. Such tech- 
niques have been applied both to 1D sign& and 2D ( 1-7), 3D (8, 9 ) ,  and 4D (10, 
11) data matrices. In applications where t h e  linear prediction is used to extend the 
timedomain signal prior to Fourier transformation ( 3, 6-1 I ) , it reduces the effect of 
truncation and thereby minimizes the need for strong apodization of the acquired 
data in the t, dimension. As a consequence this procedure improves both sensitivity 
and resolution. 

In 3D and 4D NMR, truncation of the time-domain data is generally unavoidable. 
In particular for 4D NMR experiments [ 10-23), truncation can be very severe because 
the acquisition times are frequently much shorter than T2. In several of the indirectly 
detected dimensions, commonly only 8 or 16 increments are used In these cases, it 
becomes crucial. to avoid truncation and enhance resolution in severaI dimensions 
simultaneously. Previously, we used a sequence consisting of Fourier transformation 
( tz ) , ID linear prediction ( tl ) , Fourier transformation ( t ,  ) , inverse Fourier transfor- 
mation ( tz ) , linear prediction ( tz ) , and Fourier transformation ( tz ) to accomplish this 
(11). The use of such an elaborate procedure is necessitated by the fact that the 
number of frequency components present in each ID cross section through the muI- 
tidimensional timedomain data generally exceeds the number of data points available 
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in the cross section (1, 9) .  However, a closer study of this procedure indicates that it 
can cause significant lineshape distortions and artifacts. Even for noise-free real data, 
Linear prediction can extend the timedomain accurately only if the number of fce- 
quency components iS not larger than onequarter of the availabk number of data 
points. This condition frequently is violated. Previously published methods for 2D 
linear prediction ( 2 , d )  derive the linear prediction coefficients from 1 D cross sections 
though the data matsix and therefore have similar limitations with regard to the 
maximum number of frequency components in the spectrum. Here we demon- 
strate a new method for linear prediction that predicts the truncated time domain 
in two dimensions simultaneously and that does not suffer fsom the probIem 
mentioned above. 

Our 2D linear prediction (LP) method is closely analogous to the 1 D method, but 
djffers in several points. Before discussing t h e  2D technique, we first briefly outline 
the ID procedure. In ID linear prediction, a timedomain series consisting of K ex- 
ponentially damped sinusoids, represented by N real data points, x( 1 ), . . . , x( N ) % 

can be extended by assuming that each data point can be expressed as a linear com- 
bination of M (A4 a 2K)  previous ones: 

The linear prediction coefficients, ek, can be determined by solving the N - M equations 
of type [ 13 (provided N - M >  M )  . If the totd number of data points is a few hundred 
or less, this least-squares problem can be solved very efficiently by singular-value de- 
composition. Once the linear prehction coefficients are known, the future of the. time 
domain can be calculated in a stepwise manner, using Eq. [l]. Alternatively, the 
frequencies and damping factors of the decaying sinusoids may be determined by 
calculating the roots of the polynomial, 

Z M  i- c1zM-1 i- * * . + C,+f = 0, P 1 
where the time-domain signal is given by 

and Ak is the amplitude of the kth sinusoid and 4 k  its phase. For real data, the roots 
occur as complex conjugate pairs, and one frequency component accounts €or two of 
the polynomial roots. 

In the application of linear prediction to multidrmensbnal NMR, we usually do 
not attempt to calculate the amplitudes and phases of the NMR signals, using Eq. 
[ 3 1. In the presence of noise, we find that such a procedure frequently leads to results 
that are less accurate than those obtained by peak piclung of the Fourier transform 
of the timedomain data which have been extended by a modest number ( G N )  of 
predicted data points. Note that in the latter application the predicted data points are 
strongly attenuated by the use of digital filtering; i.e., small errors in the linear prediction 
coefficients do not give rise to dramatic distortions. Rooting of polynomial Eq. [ 21 is 
desirable, however, to allow root reflection of frequency components with I zk 1 > 1, 
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i.e., of signal components that increase with time ( 9 ) -  Replacing these Zk values by 
zk/ 1 zk 1 and recalculation of the prediction coefficients ensure that the predicted por- 
tion of the signal. is damped. 
In the next section, we will describe how true 2D LP can be applied to a time- 

domain matrix of N, X N2 real data points. In our new 2D LP method, Eq. [ I ]  is 
replaced by 

or 
M P-S 

x ( m , n )  = C e~x(wt - k ,  n - 1).  14bl 
k=l 1=0 

The coefficients, c k l ,  are obtained from these linear equations using singular-value 
decomposition, in exactly the same manner as mentioned above for the ID LP case. 
The total number of frequency components in the 2D time-domain signal. now must 
be smaller than (A4 X P ) / 4 .  The number of equations, ( N ,  - M )  X (N ,  - P ) ,  must 
be larger than the number of unknown coefficients (A4 X P for Eq. {4a] and M ( P  -I- 
1 ) for Eq. [ 4b I ) .  The relation between x (  m ,  n )  and the matrix with data points x ( m  
- k, n - I) is graphicdly illustrated in Fig. 1. When using Eq. [4a], the matrix can 
be extended in both the horizontal and the vertical dimensions with a sin&- set of 
linear prediction coefficients, Ckf (Fig. la). When using Q. [ 4b], the matrix can be 
extended only in the vertical dimension (Fig. lb) ,  and a second matrix of prediction 
coefficients must be calculated for linear prediction in the horizontal dimension. The 
latter solution is slightly more robust for low signal-to-noise data and is used in the 
present work; a detailad comparison of the two methods will be presented elsewhere. 

With an M X P prediction matrix, C, we can only predict data points x( m,  n )  for 
which PPI > M and p 1 >  P (Eq. [4aJ) or p 1 >  P (m. [4b]). As a consequence, without 
further information it is not possible to predict data point x(  Nl + 1 ,  n) if PL < P (Fig. 
la). However, extra information about the NMR signal in the indirectly detected 
dimension is always available, permitting the data to be extended into the negative 
time domain (Fig. 1 c) . To avoid any discontinuities between the negative timedomain 
data and the acquired dala, special precautions must lx taken. First, since the time 
domain is only a few milliseconds long and signals decay by only a small fraction 
during this time, the damping factor (T2) can be approximated satisfactody by a 
single number for all frequency components, and the damping can be removed by 
multiplication of the time domain with an increasing exponential, prior to extending 
the data into the negative time dimension. Second, the phase of the signal is generally 
known accurately and can be adjusted experimentally to zero at time zero. Using the 
fact that cosine signals are symmetric about time zero, and assuming that sampling 
is delayed by exactly half a dwell time, the acquired data matrix may be extended into 
the negative time domain [ x (  -n + 1 ) =  PI), n = I, 2, * . ] without any discontinuity 
in the phase of thc signal. The shape of the extended matrix is depicted in Fig. IC. 

As mentioned above, in 1 D linear prediction, the stability of the procedure can be 
improved by root reflection. In the 2D method described here, this procedure cannot 
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FIG. 1. Shape of the N, X N2 data matrix used in the 2D linear prediction procedure. Solid circles 
correspond to acquired data points: open circla indicate predicted data. The predicted data are calculated 
from the adjacent enbored acquired data points, using linear prdction Eq. [4a] (a) or [4b] (b, c ) .  Data 
points marked “X”  in ( c )  have been obtained by reflecting the acquired data into thc negative time domain. 

easily be applied. Instead, we use a simpIe alternative approach: If a predicted data 
point, x’ (m,  n), has an absolute value larger than the largest acquired data point, 
1 x,, I, its magnitude is decreased according to 

x ( m ,  la) = xfax/x’(m, “) [51 

Although, in principle, such a simple reflection procedure might be expected to yield 
artifacts for 2D timedomain signals that contain closely spaced antiphase resonances, 
in practice this does not appear to be a problem for the NOE data sets €or which we 
have used it. In the absence of the reflection procedure, the predicted data frequently 
have higher noise levels, particularly for those 2D cross sections in whch there are no 

Fur simplicity, the 2D LP procedure has been discussed for real data only. Because 
of the desirable folding properties of complex data ( 14) we strongly prefer to acquire 
the data in the hypercomplex format (15) .  Although somewhat more tedious to pro- 
gram, in the examples illustrated below, the linear prediction has been applied in this 
hypercomplex manner. For the case where sampling is staded at time zero, this hy- 
percomplex approach gives resuIfs that are identical to those obtained by converting 

signals. 
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the hypercomplex N X N signal into a real 2N X 2N timedomain signal, followed by 
the real 2D LP p r o d u e ,  outlined above. Note that if sampling is not started at time 
zero, complex time-domain data cannot readily be converted to real data. 
Figure 2 shows the application of 2D LP to a synthesized 8* X 8* timedomain 

sign4 where 3" refers to eight complex data points. In the absence of noise, 2D LP 
(Fig. 2A) yields results that are indistinguishable from the Fourier transform of the 
16" X 16" noiseless synthesized data (not shown). In contrast, the combination of 
Fourier transformation, 1D linear prediction, and inverse Fourier transformation is 
not capabk of generating an accurately linear prdcted data set (Fig. 2B 1. The reason 
for this is that the number of frequency components, in any cross section to which 
ID linear prehction is applied, is larger than onequarter the number of data points 
in this cross section. 

Figure 2C shows the Fourier transform of the 8" X 8* matrix in t h e  presence of 
white noise, with no linear prediction. Figure 2D shuws the Fourier transform for a 
synthesized 16* X 16" matrix, with fwofoId lower S / N  (note that four times the 
number of experiments would have to be conducted to generate the Iarger data matrix, 
resulting in the twofoId lower SIN). Two-hmtnsional LP can be successfully used 
on the noise-containing 8* X 8" matrix (Fig. 2E). resulting in a spectrum that is of 
higher quality than either of the spectra in Figs. 2C and 2D. Although the combination 
of two 1D linear predictions with Fourier transform and inverse Fourier transform 
(Fig. 2F) improves the spectrum over that in either Fig. 2C or Fig. 2D, the quality is 
significantIy lower than that obtained with 2D LE'. 

As a final example we ilIustrate the 2D LP method for experimental data. Figure 
3A shows an Fi /F3  cross section through the I3C/ 13C-separated 4D NOESY spectrum 
(10, 13) of '3C-enriched cdmodulin complexed with a 26-residue unlabeled peptide. 
The spectrum was recorded at 600 MHz 'H frequency, using a 1 .S m M  sample con- 
centration and a tota1 accumulation time of 1.5 days. The size of the acquired time- 
domain matrix was 8*( 13C, tt) X t6*( 'H, t 2 )  X 8*(I3C, t,) X 512*( 'H, t 4 ) .  The cross 
section has been taken perpendicular to the 'H/ 'H NOESY planes, at 'H coordinates 
F2 = 0.85 ppm and F4 = 0.43 ppm. Consequently, this cross s d o n  shows the cross 
peaks between the I3C nuclei that are attached to the pairs of protons that contribute 
to the 0,&5/0.43 ppm NOESY cross-peak density. The contour level is taken at 0.3% 
of the intensity of the diagonxl methyl resonances, and the tails ofthese nearby intense 

FIG. 2. Spectra obta in4  from simulated timedomain data. The simulated time domain consists of 8 * 
X 8 * data points and is extended to 16* X 16' (in the positive time domain) by linear prodidon. Cosine- 
squared bell filtering (with the null. adjusted at data point 17) and zero filling to 64* are used in both 
dimensions prior to  Fourier transformation. Time domain sign& range in amplitude from I to 10. The 
peak-to-peak amplitude of the tirnsdomaijn noise equals 4. Broken contour lines correspond to negative 
intensity. ( A )  In the absence of noise, using 2D LF' with a 6* X 6' prediction matrix, on a data matrix 
quadrupIed in size (to 16* si 16*) by reflecting about time zero (Fig. IC). Data corresponding to tiegative 
time are discarded after 2D EP, prior to 2D IT. ( B )  In the absmw of noise, using ID LP (sm coefficients) 
in each dimension, with Founer transformation and invzrse Fourier transformation in the orthogonal di- 
mension, a5 described in the text. (C) Fourier transform of the original 8" X 8' matrix in tbe presence of 
noise. (D) Fourier transform of the simulated r6* X i6* matrix, with twice the noise amplitude in (C). 
{E) Using 2D LF in the prescnce of noise [the Same noise Ievel as that used for (C)], generated in the same 
manner as (A}. (F) 1D LP in the pmence of noise, using the same scheme as that used for (B).  



197 COMMUNICATIONS 

400 



198 COMMUNICATIONS 

RE. 3. Two-dimensional F l / F 3  cross section (at G J F 4  = 0.85t0.43 ppm) through. the 4D 13C}13C- 
scpanted NOESY spectrum of calmcdulin, complexed with a 26-residue peptide. (a) In the absence of 
tinear predicrion, using cosine-squared k11 fdtenng and zero SIling from 8* X 8 *  to 64* X 64* prior to 
213 F?. (b) With 2D LF, using a 6' X 6* prediction matrix and extending the data matrix into the negative 
hme domain (resulting in 16* X 16*) prior to 2D LP. After 2D LP the negative timedomain data are 
discarddd, and the remaining 16 * X I6 * is subjected to cosine bell fiItenng and zero filling to 64 * X 64 *, 
pnor to 2D IT. Except for the 196/L696 and V35~/L396 cross peaks, all  cros paks mrrqmnd to int*arwidue 
interactions. The artifact near F,/FI = 28/23 ppm results fram the fact that in the 2D LP procedure no 
proper root reflection a n  be applied. Broken contour lines correspond to negative intensity. 

diagonal peaks give rise to the spurious diagonal resonances observed in Fig. 3. Figure 
3a has been obtained without linear prediction and Fig. 3b dlustrates the resolution 
enhancement obtainable with 2D linear prediction. Prior to calculating the mirror 
image drtta. signal decay was removed by multip1ying the time domain with 
, d ( I 1 + ~ 3 ) ~ ~ 2 1 ,  with T2 = 20 ms and t l ,  = t3,, = 2.4 ms. The length of the time domain 
was extended to twice its original value (4.8 ms) in both the tl and the l3 dimensions. 
The improved resolution afforded by  the linear prediction clearly reveals six NOE 
interactions in this cross section, in addition to nearly a dozen spurious diagonal peaks 
resulting from the nearby intense diagonal peaks in the 'H/ 'H pIanes. 

The 2D LP method works very welI, provided that the data are severely truncated 
in both dimensions. This means that it is only of rea1 use for the andysis of 3D and 
4D data sets, where this situation commonly occurs. The price to be paid for 2D LP 
is the enormous amount of computing time needed. For example, in t he  present case, 
where the method is applied to an 8* X 8* data set, 36 hypercomplex coefficients 
need to be calculated from 220 equations, requiring 19 seconds on an IBM 6000/530 
workstation. This process is repeated twice, to obtain predicted data in both dimensions 
(Eq. [ 4b] >. AppIication of this type of procedure to a 16 * X 16 * acquird data matrix, 
using a 12' X 12" prediction matrix, requires about 20 minutes. Considering that 
this type of procedure must be applied to a11 cross sections through the 3D or 4D data 
set, the required computational time presentIy limits the general applicabiIity of the 
2D LP method. The large amount of computation time required also presents the 
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main stumbling block for extending the procedure outlined here to three 01 more 
dimensions. However, extrapolating the increase in computer power witnessed over 
the. past decade, it may be anticipated that these applications will become feasible in 
the foreseeable future. 
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